

GUANAJIBO RIVER SURFACE WATER AND SEDIMENT SAMPLING RESULTS HEWLETT-PACKARD VOLUNTARY REMEDIAL ACTIONS SAN GERMAN, PUERTO RICO

PREPARED FOR:

Hewlett-Packard Corporation Houston, Texas

PREPARED BY:

GZA GeoEnvironmental, Inc. Manchester, New Hampshire

June 2004 File No. 20876.62

Copyright © 2004 GZA GeoEnvironmental, Inc.

June 9, 2004 File No. 20876.62

380 Harvey Road Manchester

New Hampshire

FAX 603-624-9463 http://www.gza.net

03103-3347 603-623-3600 Mr. Manuel Vargas Puerto Rico Environmental Quality Board 431 Ponce de Leon Avenue, 11th Floor Hato Rey, Puerto Rico 00917

Re: Guanajibo River Surface Water and Sediment Sampling Results

Hewlett-Packard Voluntary Remediation Project

San German, Puerto Rico

Dear Mr. Vargas:

GZA GeoEnvironmental, Inc. (GZA), on behalf of Hewlett-Packard Company (Hewlett-Packard), is pleased to submit to Environmental Quality Board (EQB) the enclosed Guanajibo River Surface Water and Sediment Sampling Results Report. Sampling was performed on March 11, 2004, which involved the collection of co-located surface water and sediment samples at four locations along the Guanajibo River in accordance with the EQB-approved Sampling and Analysis Plan (SAP) (dated August 2003), and GZA's response-to-comments letter to EQB (dated December 16, 2003).

Analytical results from this sampling effort, in combination with site-specific data, validates that the Hewlett-Packard remedial system in place effectively captures contaminated groundwater, and is not impacting the downgradient Guanajibo River.

If you have any questions, please contact me at (603) 623-3600 at your convenience.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Warland & asselm

Michael B. Asselin Senior Project Manager

MBA:rss

I:\jobs\20876\20876.62\River Sampling\sw-sed sampling report\coverltr.doc

Attachment

cc: Chris Davis; Goodwin Procter LLP

Margarita Maldonado; (PRIDCO) FOMENTO Planning and Public Affairs

Lee Manning; Hewlett-Packard Susan Pearce; Hewlett-Packard

Pedro Reyes; Fiddler, Gonzalez & Rodriguez LLP

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	BRIEF SITE HISTORY	2
4.0	SAMPLING METHODS	2
	4.1 SAMPLE LOCATIONS	2
	4.2 SAMPLING PROCEDURES	3
	4.2.1 Surface Water Sampling Procedure	3
	4.2.2 Sediment Sampling Procedure	3
	4.2.3 Laboratory Analysis/Data Validation	3
5.0	ANALYTICAL RESULTS	4
	5.1 SUMMARY SURFACE WATER RESULTS	4
	5.2 SUMMARY OF SEDIMENT RESULTS	4
6.0	FINDINGS	5

TABLES

TABLE 1	SUMMARY OF SURFACE WATER SAMPLING RESULTS
TABLE 2	SUMMARY OF SEDIMENT SAMPLING RESULTS

FIGURE

FIGURE 1 SAMPLING LOCATION PLAN

APPENDICES

APPENDIX A	LIMITATIONS
APPENDIX B	PHOTOGRAPHS OF SAMPLING LOCATIONS
APPENDIX C	PHOTOGRAPHS OF SEDIMENT SAMPLING DEVICE
APPENDIX D	PUERTO RICO-CERTIFIED LABORATORY ANALYTICAL REPORT
APPENDIX E	SUMMARY OF SURFACE WATER FIELD SCREENING RESULTS

1.0 INTRODUCTION

This Guanajibo River Surface Water and Sediment Sampling Report (Report) is submitted to the Puerto Rico Environmental Quality Board (EQB) in support of the Hewlett-Packard Company (Hewlett-Packard) Voluntary Soil and Groundwater Remediation project at the former Digital Equipment Corporation (Digital) facility in San German, Puerto Rico. Hewlett-Packard, formerly Compaq Computer Corporation (Compaq), has retained GZA GeoEnvironmental, Inc. (GZA) to perform this work in accordance with the EQB-approved Sampling and Analysis Plan (SAP) (dated August 2003), as revised in GZA's response-to-comments letter to EQB (dated December 16, 2003). GZA followed the EQB-approved Quality Assurance Project Plan, Revision I dated August 2000, in performing this work.

The objective of this work is to document current surface water and sediment conditions relative to volatile organic compound concentrations at the former Digital San German project site, based on EQB comments to the Revised Well Monitoring Plan (dated June 23, 2003). Analytical results from this sampling effort, in combination with site-specific data, validates that the remedial system in place effectively captures contaminated groundwater, and is not impacting the downgradient Guanajibo River. The following sections of this Report provide a brief site description and history, summary of the sampling methods (including sample collection procedures and sample analysis), summary of the analytical results, findings, and conclusions.

Please note that the findings, opinions, conclusions, and recommendations presented herein are subject to the Limitations provided in *Appendix A*.

2.0 SITE DESCRIPTION

The former Digital facility is located on State Highway 362 in San German, Puerto Rico and consists of an approximate 18-acre industrial facility with three contiguous buildings (Buildings 1, 2, and 5), totaling approximately 200,000 square feet. The topography generally slopes downward from the central portion of the site where buildings are located, towards the parking areas to the west and southeast, with approximately 20 to 30 feet of relief. The former Digital facility is located approximately 1,000 feet south and 2,000 feet west of the Guanajibo River in a tributary drainage basin, and is bounded by a steep northeast to southeast trending ridge to the north and a smaller hill to the south.

The Guanajibo River generally flows in a westerly to northwesterly direction in this area. Flow characteristic of this river vary significantly as a result of seasonal fluctuations in precipitation and runoff. The mean-annual flow rate of the river near Hormigueros (approximately 7.5 miles downstream of San German) is approximately 200 cubic feet per second. On a monthly basis, the 90-percent duration (defined as the discharge that is exceeded 90-percent of the time) at this location ranges between approximately 10 cubic feet per second (in June) and approximately 115 cubic feet per second (in October and November).

3.0 BRIEF SITE HISTORY

The property is owned by the Puerto Rico Industrial Development Company (PRIDCO). PRIDCO leases and develops the property with tenants, where the tenants own the physical structures. Digital leased the property from PRIDCO from July 1968 to 1992, and operated a printed wire board (PWB) and module assembly manufacturing facility. In the mid-1970s, Digital used trichloroethylene (TCE), the primary chemical of concern for groundwater contamination at the site, in the Wave Solder Process as a degreaser and cleaning agent. Digital stopped using TCE in 1978, and terminated manufacturing operations in 1991. The facility was inactive between 1991 and 1993. In January 1993, the site was leased and occupied by Circo Caribe. The plant manufactured PWBs at the site until March 2001; however, they did not use TCE. In October 2001, an employee group (PCB Horizon Technology, Inc.) took over the facility and began low volume (one shift per day) production of PWBs in November 2002.

In preparation for Digital's sale of the facility and to meet the obligations of the PRIDCO property lease, Digital completed two environmental investigations in 1992 and 1993. These extensive environmental investigations identified site-wide groundwater contamination by chlorinated ethenes (i.e., TCE and cis-1,3-dichloroethylene [DCE]). Surface water and sediment samples were collected and analyzed at three locations along the Guanajibo River in 1993 to evaluate whether site contamination had impacted the river. The 1993 river sampling results detected no site related contamination in the Guanajibo River.

Digital's remedial strategy was: (1) a remediation system, which contained the contaminated groundwater by creating and maintaining a groundwater capture zone; and (2) a soil vapor extraction system to remove contaminants from the soil in the loading dock area. All remedial systems were designed in cooperation and approval of United States Environmental Protection Agency (EPA) Region II and the EQB. Operation of the remedial systems began in November 1995 and system operation has been continually monitored. In a letter dated July 16, 1996, EPA Region II named the EQB as the lead regulatory agency for the former Digital facility.

Compaq purchased Digital in 1998, and Hewlett-Packard merged with Compaq in May 2002. Hewlett-Packard continues to operate the soil vapor extraction system, the groundwater extraction wells, and the groundwater treatment system at the time of this Report. Groundwater data continues to show that the groundwater capture zone preventing contamination from migrating off site is being maintained.

4.0 SAMPLING METHODS

4.1 SAMPLE LOCATIONS

Surface water and sediment sampling was performed on March 11, 2004 on behalf of Hewlett-Packard by GZA's subcontractor, JFA Geologic & Environmental Scientists (JFA) of Aguadilla, Puerto Rico. Sampling activities included the collection of co-located surface water and sediment samples at four locations along the Guanajibo River, as illustrated on *Figure 1*. The selection of sampling locations was based on GZA's/JFA's observations of the river, access points to the river, and on the regional groundwater flow direction (west / northwest), relative to the location of the former Digital facility. Refer to *Appendix B* for photographs of each sample location. Samples were designated with the following identifications:

- GZA-SW-1/GZA-SD-1 Upgradient (southeast) of the site;
- GZA-SW-2/GZA-SD-2 Upgradient (southeast) of the site;
- GZA-SW-3/GZA-SD-3 Downgradient (west) of the site; and
- GZA-SW-4/GZA-SD-4 Downgradient (northwest) of the site.

The "SW" designates a surface water sample and the "SD" designates a sediment sample. The upgradient sampling locations GZA-SW-1/GZA-SD-1 and GZA-SW-2/GZA-SD-2 are reflective of background conditions.

4.2 SAMPLING PROCEDURES

Sampling was performed in general accordance with the EPA-approved Quality Assurance Project Plan, Revision 1 dated August 2000, and the EQB-approved SAP (dated August 2003), as revised in GZA's response-to-comments letter to EQB (dated December 16, 2003). A general summary of sampling activities is provided below. For specific methodology, refer to the referenced SAP for the Standard Operating Procedures implemented for the work performed.

4.2.1 Surface Water Sampling Procedure

The depth of water within the Guanajibo River at the four sample locations was estimated to be between 0.5 foot and 1.5 feet deep on March 11, 2004. Each sample location was accessed by foot, due to the shallow nature of the river at the time of the sampling event. Sampling was performed from downstream to upstream locations so as to minimize potential disturbance to the river. At each location, surface water samples were collected prior to sediment samples, and upgradient of the sampler in-stream to ensure that the surface water sample was representative of actual flow conditions. Surface water samples were collected as grab samples, from the center of the river in the approximate center of the water column, using a dedicated glass container. The sample was immediately decanted to the appropriately preserved VOA vial, taking care to minimize agitation of the sample to the extent possible. Surface water at each sample location was also screened in the field for pH, temperature, conductivity, and dissolved oxygen (DO) using a portable, Horiba U-10-Water Quality Checker.

4.2.2 Sediment Sampling Procedure

Sediment samples were collected as grab samples from the approximate top 4 to 5.5 inches using a sediment-coring device. Refer to *Appendix C* for photographs of sediment sample collection device. Using a dedicated stainless steel scoop, sediment was immediately placed into appropriately preserved jars, taking care to minimize agitation of the sample to the extent possible.

4.2.3 Laboratory Analysis/Data Validation

For quality control/quality assurance purposes, one duplicate sample was collected for both surface water and sediment. All samples were submitted to Severn Trent Laboratories, Inc. of Tallahassee, Florida for volatile organic compound analysis by EPA Method 8021. All data was validated by a Puerto Rico-certified chemist.

5.0 ANALYTICAL RESULTS

Analytical results for the March 2004 surface water and sediment sampling of the Guanajibo River are presented in *Table 1* and *Table 2*, respectively. Refer to *Appendix D* for the Puerto Rico-certified laboratory analytical data reports.

5.1 SUMMARY SURFACE WATER RESULTS

Surface water was observed to be clear, with no sheens or odors at any of the four sampling locations. There were no contaminants detected in surface water above laboratory reporting limits.

Surface water quality field screening data collected is summarized in *Appendix E*. The following provides a general summary of these data results:

- DO ranged between 8.5 milligrams per liter (mg/L) (GZA-SW-3) and 11.14 mg/L (GZA-SW-2), with an average DO concentration of 9.9 mg/L;
- Conductivity ranged between 0.462 microseism per centimeter (μS/cm) (GZA-SW-1) and 0.490 μS/cm (GZA-SW-4) with an average conductivity of 0.474 μS/cm;
- pH ranged between 5.98 (GZA-SW-3) and 6.85 (GZA-SW-2), with an average pH of 6.51; and
- Temperature ranged between 26.9 degrees Celsius (°C) (GZA-SW-2) and 27.5°C (GZA-SW-1), with an average temperature of 17.2°C.

5.2 SUMMARY OF SEDIMENT RESULTS

Sediment at the four sampling locations was generally found to consist of loose, medium to coarse gravel, with approximately 30 percent medium sand, and trace silt. There were no odors or visual evidence of contamination.

There were two compounds detected in the river sediment: (1) methylene chloride (dichlorormethane); and (2) trichlorofluoromethane. Methylene chloride was detected in both upgradient (GZA-SD-1 and GZA-SD-2) and downgradient (GZA-SD-3 and GZA-SD-4) sediment samples. Concentrations ranged between an estimated 2.1 micrograms per liter (μ g/L) and 8.0 (μ g/L). The methylene chloride concentrations for GZA-SD-01 duplicate, GZA-SD-02, and GZA-SD-04 were estimated by the laboratory. Concentrations less than 5.0 μ g/L are considered "estimated" values, as the laboratory reporting limit for this compound is 5.0 μ g/L. The highest methylene chloride concentration was detected in the most-upgradient location (GZA-SD-1). Refer to *Figure 1*.

Trichlorofluoromethane was detected in the farthest downgradient sediment sample location (GZA-SD-4) at an estimated concentration of 1.2 μ g/L. The laboratory considered this concentration to be an estimate because the value was below the reporting limit for this compound (5.0 μ g/L).

6.0 FINDINGS

Analytical results from the sampling of surface water and sediment along the Guanajibo River downgradient of the former Digital facility, in combination with site-specific data spanning 12 years, validates that Hewlett-Packard's remedial system effectively captures contaminated groundwater, and is not impacting the Guanajibo River. The primary contaminants of concern at the former Digital facility are TCE and its breakdown product, DCE. These contaminants were not detected in surface water or sediment at any of the sample locations above laboratory detection limits. These findings are consistent with the 1993 investigation, in which it was concluded that there were no measurable impacts to river surface water and sediment along the Guanajibo River from contaminated groundwater at the former Digital facility.

There were no contaminants detected in any of the four surface water locations. In sediment samples, two compounds were detected: (1) methylene chloride; and (2) trichlorofluoromethane. Low concentrations of methylene chloride (ranging between an estimated 2.1 μ g/L and 8 μ g/L) were detected in both upgradient and downgradient sampling locations. The highest concentration of methylene chloride (8 μ g/L) was detected in the most upgradient sediment sample (GZA-SD-1). This indicates that there is an upgradient source of methylene chloride, unrelated to the former Digital facility.

A low concentration of trichlorofluoromethane (estimated by the laboratory to be $1.2~\mu g/L$) was detected in sediment at the farthest downgradient sediment sampling location (GZA-SD-4). Historical records do not indicate that trichlorofluoromethane was used at the former Digital facility, nor has it ever been a contaminant of concern in the site groundwater. The Guanajibo River has a history of impaired water quality due to commercial and industrial discharges, and it is most likely that the source of trichlorofluoromethane is upgradient and unrelated to groundwater contamination at the former Digital facility.

It is confidently concluded that the groundwater contamination associated with the former Digital facility has had no measurable impact to the surface water and sediment along the Guanajibo River, and that the remedial system in place effectively maintains the groundwater capture zone, preventing migration of the contaminants of concern.

I:\jobs\20876\20876.62\River Sampling\sw-sed sampling report\final report.doc

TABLE 1 Summary of Surface Water Sampling Results ($\mu g/L$) of the Guanajibo River

Hewlett-Packard Voluntary Remediation Project San German, Puerto Rico

Surface Water Sample Location	Carbon tetrachloride	Chloroethane	Chloroform	Dichlorodifluoromethane	1,1- Dichloroethane (DCA)	1,2-Dichloroethane	1,1-Dichloroethene	1,2-Dichloropropane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Methylene chloride	Tetrachloroethene (PCE)	1,1,1-Trichloroethane (TCA)	1,1,2-Trichloroethane	Trichloroethene (TCE)	Trichlorofluoromethane	Vinyl chloride	cis-1,2 Dichloroethene (DCE)	Chloromethane	Dibromochloromethane	trans-1,2 Dichloroethylene	1,3-Dichloropropene (total)
PR Water Quality Standards, Resolution R-03-5 (March 2003)	2.5	N/A	57	5.6	N/A	3.8	0.57	5.2	2,700	400	400	470	8	200	6	27	N/A	2	700 \I	N/A	4.1	700	10
Upgradient GZA-SW-1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Upgradient GZA-SW-1 Duplicate	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Upgradient GZA-SW-2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Downgradient GZA-SW-3		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Downgradient GZA-SW-4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

- 1. There is currently no PR Water Quality Standard for 1,2 Cis dichloroethene. The standard shown is the standard for 1,2 trans dichloroethene.
- 2. *N/A* indicates no standard available
- 3. Surface water samples were collected on March 11, 2004
- 4. All units are in micrograms per liter (μg/L) or parts per billion (ppb)

TABLE 2 Summary of Sediment Sampling Results ($\mu g/kg$) of the Guanajibo River

Hewlett-Packard Voluntary Remediation Project San German, Puerto Rico

Sediment Sample Location	Carbon tetrachloride	Chloroethane	Chloroform	Dichlorodifluoromethane	1,1- Dichloroethane (DCA)	1,2-Dichloroethane	1,1-Dichloroethene	1,2-Dichloropropane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Methylene chloride	Tetrachloroethene (PCE)	1,1,1-Trichloroethane (TCA)	1,1,2-Trichloroethane	Trichloroethene (TCE)	Trichlorofluoromethane	Vinyl chloride	cis-1,2 Dichloroethene (DCE)	Chloromethane	Dibromochloromethane	trans-1,2 Dichloroethylene	1,3-Dichloropropene (total)
Upgradient GZA-SD-1	<6.6	<13	<6.6	<6.6	< 6.6	<6.6	<6.6	<6.6	< 6.6	<6.6	< 6.6	8	<6.6	<6.6	<6.6	<6.6	<6.6	<13	<6.6	<13	<6.6	<6.6	<6.6
Upgradient GZA-SD-1 (Duplicate)	<6.6	<13	<6.6	<6.6	< 6.6	<6.6	<6.6	<6.6	< 6.6	<6.6	<6.6	5.3J	<6.6	< 6.6	<6.6	<6.6	<6.6	<13	<6.6	<13	<6.6	<6.6	<6.6
Upgradient GZA-SD-2	< 5.0	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	2.1J	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<10	< 5.0	<10	< 5.0	< 5.0	< 5.0
Downgradient GZA-SD-3	<5.3	<11	< 5.3	< 5.3	< 5.3	< 5.3	< 5.3	< 5.3	< 5.3	< 5.3	< 5.3	7.7	< 5.3	< 5.3	< 5.3	< 5.3	< 5.3	<11	< 5.3	<11	< 5.3	<5.3	<5.3
Downgradient GZA-SD-4	<7.3	<15	<7.3	<7.3	<7.3	<7.3	<7.3	<7.3	<7.3	<7.3	<7.3	3.1J	<7.3	<7.3	<7.3	<7.3	1.2J	<15	<7.3	<15	<7.3	<7.3	<7.3

Notes:

- 1. Sediment samples were collected on March 11, 2004.
- 2. All units are in micrograms per kilogram (µg/kg) or parts per billion (ppb).

APPENDIX A

LIMITATIONS

LIMITATIONS

- 1. The reported findings submitted in this report are based in part upon previous and recent data obtained from a limited number of samples from widely spaced surface water and sediment locations. The nature and extent of variations between these locations may not become evident until further investigation is performed. If variations or other latent conditions then appear evident, it will be necessary to re-evaluate the conclusions of this Report.
- 2. Quantitative laboratory testing was performed as part of this investigation. Where such analyses have been conducted by an outside laboratory, GZA GeoEnvironmental, Inc. (GZA) has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these data.
- 3. The findings contained in this Report are based in part upon various types of chemical data and are contingent upon their validity. These data have been reviewed and interpretations made in the Report. Some of these data were preliminary "screening" level data, and may have not been confirmed with quantitative analyses. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed by GZA, and the findings presented herein modified accordingly.
- 4. Chemical analyses have been performed for specific parameters during the course of this study, as detailed in the text. It must be noted that additional constituents not searched for during the current study may be present in soil and groundwater at the site.

I:\jobs\20876\20876.62\River Sampling\sw-sed sampling report\final report.doc

APPENDIX B

PHOTOGRAPHS OF SAMPLING LOCATIONS

San German, Puerto Rico

PHOTOGRAPH NO. 1 - Sample Location GZA-SW-1/GZA-SD-1

PHOTOGRAPH NO. 2 - Sample Location GZA-SW-1/GZA-SD-1

San German, Puerto Rico

PHOTOGRAPH NO. 3 - Sample Location GZA-SW-2/GZA-SD-2

PHOTOGRAPH NO. 4 - Sample Location GZA-SW-2/GZA-SD-2

San German, Puerto Rico

PHOTOGRAPH NO. 5 - Sample Location GZA-SW-3/GZA-SD-3

PHOTOGRAPH NO. 6 - Sample Location GZA-SW-3/GZA-SD-3

San German, Puerto Rico

PHOTOGRAPH NO. 7 - Sample Location GZA-SW-4/GZA-SD-4

APPENDIX C

PHOTOGRAPHS OF SEDIMENT SAMPLING DEVICE

GUANAJIBO RIVER SEDIMENT SAMPLING DEVICE Hewlett-Packard Voluntary Remediation Project San German, Puerto Rico

PHOTOGRAPH NO. 1

PHOTOGRAPH NO. 2

APPENDIX D

PUERTO RICO-CERTIFIED LABORATORY ANALYTICAL REPORT

CERTIFICATE

I hereby certify that our staff have reviewed and evaluated all analytical raw data concerning laboratory reports of analyses for STL Log No(s): T412105, samples 1 through 15 and 27 (pages 1-21). To the best of my knowledge, the results for said log number signed by Laura B. Snead (STL Tallahassee Project Manager) are correct and reliable.

CHAIN-OF-CUSTODY DOCUMENTATION

PROJECT LOCATION WATRIX GOVERNOT NO. CLIENT FAX COURTANT FD AND AND AND AND AND AND AND A	ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD \mathbf{STD}	CUSTODY REC		STL 284 Talla	STL Tallahassee 2846 Industrial Plaza Drive Tallahassee, FL 32301 Alternate Laboratory Name,	STL Tallahassee 2846 Industrial Plaza Drive Tallahassee, FL 32301 Alternate Laboratory Name/Location	ocation	Website: www.stlinc.com Phone: (850) 878-3994 Fax: (850) 878-9504	stlinc.com 378-3994 3-9504	7412105
PROJECT TOCATION WATER CONTRACT NO. CLENT FAX ATION CLENT FAX ATION NUMBER OF CONTAINERS SUBMITED NUMBER OF CONTAINE	<u> </u>							Phone: Fax:		
CLEENT FAX CLEENT FAX NUMBER OF CONTAINERS SUBMITTED NUMBER	PR (ST	OCATION OQ	MATRIX			REQUIR	ED ANALYSIS		PAGE	₽
ATION NUMBER OF COMPOSITE (C) OR GRAB (G) MUDICS NUMBER OF COMPOSITE (C) OR GRAB (G) NUMBER OF	00								STANDARD RE DELIVERY	١.
ATION WEELNGUISHED BY: ISSUANDED RECEIVED BY: ISSUANDED SOL-80 AND NUMBER OF CONTAINERS SUBMITTED NUMBER OF CONTAINERS SUBMITTED NUMBER OF CONTAINERS SUBMITTED NUMBER OF CONTAINERS SUBMITTED NONAQUEOUS (WATER) AND NOVAQUEOUS (WATER) NOVAQUEOUS (WATER) AND NOVAQUEOUS (WATER) NOVAQUEOUS (WATER) AND NOVAQUEOUS (WATER) NOVAQUEOUS			113/10	QI	Z/C				DATE DUE)
ATION NUMBER OF CONTAINERS SUBMITTED NUMBER OF CONTAINERS SU		(5) 8A95		28-1	Z0/ Z0/				EXPEDITED RE DELIVERY (SURCHARGE)	PORT
ATION AND AND AND AND AND AND AND A			IROFIC	? 08	<i>Q</i> 8	<u></u>			DATE DUE	
NUMBER OF CONTAINERS SUBMITTED REMARKS STATE RELINQUISHED BY: GGWINES SHARKS STATE			OB SEN	34	100				NUMBER OF CO PER SHIPMENT	OOLERS SUBMITTED
Nup	IDENTIFICATION		SOLID		 	JMBER OF CON	ITAINERS SUBMITTED		RE	MARKS
NO	7	8	\ \	W						
	7		×		-					
			~	n						
X 3			×							
	-2		_	3						
	-2		×							
				3						
			×		~					
	G2A- SW-4		\\ >	3						
RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE CUSTION: A LABORATORY REMARKS TOOL NO	5D-4		×		_					
RELINQUISHED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) TO SIGNATURE) RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) TO SIGNATURE) TO SIGNATURE) RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) TO SIGNATURE) RECEIVED BY: (SIGNATURE)	\		\	M						
RELINQUISHED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE DATE THANE RECEIVED BY: (SIGNATURE) DATE DATE THANE CUISTOBY RECEIVED BY: (SIGNATURE) DATE THANE	\sim									
RECEIVED BY: (SIGNATURE) CUSTODY: INTACT CUSTODY: INTACT SEAL NO TOTAL DATE TIME RECEIVED BY: (SIGNATURE) DATE DATE DATE TOTAL DATE DATE TOTAL DATE DATE TOTAL	(<u>@</u>	QUISHED BY: (SIGNATUR	4		DATE 3/15/04		RELINQUISHED BY	(SIGNATURE)	DATE	TIME
DACT CUSTODY STLTALLAHASSEE		ved BY: (signature)			ЭАТЕ	TIME	RECEIVED BY: (SIGN	IATURE)	DATE	TIME
TACT: CUSTODY STETALLAHASSEE SEALNO LOG NO TOTAL OS			PRATORY U	E ONLY		15 m. Carl				
400 M - 1740 105	ME CUST	to E	TODY L NO		LAHASSEE		r remarks			
THE WASHINGTON AND THE WASHINGTON THE PARTY OF THE PARTY	900 NO	_ 0		719	の で					

LABORATORY REPORT

Analytical Report

For: Mr. Michael Asselin

GZA GeoEnvironmental, Inc.

380 Harvey Road

Manchester, NH 03103-3347

cc:

Order Number: T412105 SDG Number: GZA065

Client Project ID:

Project: Guanajibo River Sampling

Report Date: 04/05/2004

Sampled By: Client

Sample Received Date: 03/17/2004

Requisition Number: Purchase Order:

Laura B Snead

Laura B. Snead, Project Manager

lsnead@stl-inc.com

Validated & Certified by:

License No.: 314

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Sample Summary

Order: T412105 Date Received: 03/17/2004 Client: GZA GeoEnvironmental, Inc. Project: Guanajibo River Sampling

Client Sample ID	Lab Sample ID	Matrix	Date Sampled
GZA-SW-1	T412105*1	Liquid	03/11/2004 10:10
GZA-SW-1 DUP	T412105*2	Liquid	03/11/2004 10:15
GZA-SW-2	T412105*3	Liquid	03/11/2004 11:30
GZA-SW-3	T412105*4	Liquid	03/11/2004 12:35
GZA-SW-4	T412105*5	Liquid	03/11/2004 13:05
Trip Blank	T412105*6	Liquid	03/11/2004
Field Blank	T412105*7	Liquid	03/11/2004 10:45
Equipment Blank-SW	T412105*8	Liquid	03/11/2004 09:55
Equipment Blank-SD	T412105*9	Liquid	03/11/2004 10:05
GZA-SD-1	T412105*10	Solid	03/11/2004 10:30
GZA-SD-1 DUP	T412105*11	Solid	03/11/2004 10:40
GZA-SD-2	T412105*12	Solid	03/11/2004 11:45
GZA-SD-3	T412105*13	Solid	03/11/2004 12:45
CZA-SD-4	T412105*14	Solid	03/11/2004 13:15
Laboratory Duplicate Result (Batch)	T412105*15	Liquid	55, 22, 2001 15:15
Laboratory Duplicate Result (Batch)	T412105*27	Solid	

Page 2 of 21 241

12105-2 CZA-SW-1 CUP Liquid 03/17/04 03/11/04 10:15 CZA-681 CZA-SW-2 Liquid 03/17/04 0	Lab Sample ID De	scription				Matrix	Date Received	Date Sampled	SDG#
12105-2 CZA-SW-1 DUP	12105-1 GZ/	A-SW-1		117012		Liquid	03/17/04	03/11/04 10:10	GZA065
12105-3 CZA-SW-2 Liquid 03/17/04 03/11/04 11:30 CZAOS1 CZA-SW-3 CZA-SW-3 CZAOS1 CZAOS1 CZA-SW-3 CZAOS1 CZAOS1									GZA065
Liquid 03/17/04 03/11/04 12:35 02/065 12105-5 02/A-SW-4						Liquid	03/17/04		
Liquid 03/17/04 03/11/04 13:05 02/065						Liquid	03/17/04		GZA065
Parameter Units 12105-1 12105-2 12105-3 12105-4 12105-5	12105-5 GZ/	A-SW-4				Liquid	03/17/04	03/11/04 13:05	GZA065
Purgeable Halocarbons (8021) Bromodichloromethane ug/l 1.00 1.00 5.00 5.00 5.00 5.00 Bromoform ug/l 5.00 5.00 5.00 5.00 5.00 5.00 1.00 1.00				Lab:	Sample IDs				
BromodichToromethane ug/1 1.00 1.00 1.00 1.00 1.00 5.00 5.00 5.0	Parameter		Units	12105-1	12105-2	1210	5-3 1216	05-4 121	05-5
Bromoform ug/l 5.0U 5.0U 5.0U 5.0U 5.0U 5.0U Bromomethane (Methyl bromide) ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Purgeable Hal	locarbons (80	021)						
Bromoform ug/l 5.0U 5.0U 5.0U 5.0U 5.0U 5.0U 5.0U Bromomethane (Methyl bromide) ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Bromodichlorometha	ane	ug/l	1.00	1.00	1.00	1.00	ا ـ 1.0	J
Bromomethane (Methyl bromide) ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Bromoform		ug/l	5.00					
Carbon tetrachloride	Bromomethane (Meth	nyl bromide)	ug/1	1.00					
Chlorobenzene ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U Chloroethane ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Carbon tetrachlori	ide	ug/l	1.00	1.00				
Chloroethane ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U Chloroform ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Chlorobenzene		ug/l	1.00	1. 0 U	1.00			
Chloroform ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Chloroethane		ug/l	1.00	1.0U	1.00			
Chloromethane ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Chloroform		ug/l	1.00	1.00	1.00			
Dibromochloromethane ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Chloromethane		ug/l	1.00	1.0U	1.00	1.00		
1,3-Dichlorobenzene ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Dibromochlorometha	ane	ug/l	1.00	1.00	1.00	1.00		
1,3-Dichlorobenzene ug/l 1.0U	1,2-Dichlorobenzen	ne	ug/1	1.00	1.00	1.00	1.00	1.00	J
Dichlorodifluoromethane ug/l 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1,3-Dichlorobenzen	ne	ug/1	1.00	1.00	1.00	1.00		
Dichlorodifluoromethane ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.1.U 1.0U 1.0	1,4-Dichlorobenzen	ne	ug/1	1.0U	1.00	1.00			
1,1-Dichloroethane ug/l 1.0U 1	Dichlorodifluorome	ethane	ug/l	1.00	1.0U	1.00			
1,1-Dichloroethene ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	1,1-Dichloroethane	2	ug/l	1.00	1.00	1.00	1.00		
Cis-1,2-Dichloroethylene	1,2-Dichloroethane	2	ug/l	1.00	1.00	1.00	1.00		
trans-1,2-Dichloroethene ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	1,1-Dichloroethene	2	ug/l	1.00	1.00	1.00	1.00	1.00	
trans-1,2-Dichloroethene ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.2-Dichloropropane ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	cis-1,2-Dichloroet	hylene	ug/1	1.00	1.00	1.00	1.00	1.00	l
cis-1,3-Dichloropropene ug/l 1.0U	trans-1,2-Dichloro	ethene	ug/l	1.00	1.00	1.00	1.00		
cis-1,3-Dichloropropene ug/l 1.0U	1,2-Dichloropropan	ne	ug/l	1.00	1.00	1.00	1.00	1.00	l
Methylene chloride (Dichloromethane) ug/l 5.0U	cis-1,3-Dichloropr	ropene	ug/l	1.0U	1.00	1.00	1.00		
(Dichloromethane) ug/l 5.0U 1.0U 1.	trans-1,3-Dichloro	propene	ug/l	1.00	1.00	1.00	1.00	1.00	•
1,1,2,2-Tetrachloroethane ug/l 1.0U	Methylene chloride	:							
Tetrachloroethene ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	(Dichloromethane	<u>:</u>)	ug/1	5.0U	5.00	5.00	5.00	5.00	!
1.00	1,1,2,2-Tetrachlor	oethane	ug/1	1.00	1.00	1.00	1.00	1.00	1
1,1,1-Trichloroethane ug/l 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U	Tetrachloroethene		ug/1	1.00	1.0U	1.00	1.00	1.00	
	1,1,1-Trichloroeth	ane	ug/l	1.00	1.00	1.00	1.00	1.00	1

Lab Sample ID	Description				Matrix	Date Receive	d Date Sa	mpled	SDG#
12105-1	GZA-SW-1	 ,			Liquid	03/17/04	03/11/0	4 10:10	GZA065
12105-2	GZA-SW-1 DUP				Liquid	03/17/04	03/11/04		GZA065
12105-3	GZA-SW-2				Liquid	03/17/04	03/11/04		GZA065
12105-4	GZA-SW-3				Liquid	03/17/04	03/11/04		GZA065
12105-5	GZA-SW-4				Liquid	03/17/04	03/11/04		GZA065
			Lab S	iample IDs	•	,,	,, -	. 25105	Œ 1003
Parameter		Units	12105-1	12105-2	1210	5-3 <u>12</u> 1	LO5-4	1210	5-5
Purgeable	e Halocarbons (8	3021)							
1 1 2 West 13.	.1	-							
1,1,2-Trichlor		ug/l	1.00	1.00	1.00			1.00	
		ug/1	1.00	1.00	1.00		U	1.00	
Trichlorofluor		ug/l	1.00	1.00	1.00	1.0	U	1.00	
Vinyl chloride		ug/1	1.00	1.00	1.00	1.0	U	1.00	
2-Chloroethylv	inyl ether	ug/l	100	100	1.00	100)	100	
Surrogate -									
Bromoch1oron	nethane *	%	110 %	110 %	110 9	11 0	%	110 9	6
Dilution Facto	or		1	1	1	1		1	
Prep Date			03/22/04	03/22/04	03/23	3/04 03/	23/04	03/23	3/04
Analysis Date			03/22/04	03/23/04	03/2		23/04	03/23	
Batch ID			VG031904A	VG031904A	VG03:	•	31904A	•	1904A

Lab Sample ID D	escription				Matrix	Date Receive	d Date Sampled	SDG#
12105-6 Tı	rip Blank				Liquid	03/17/04	03/11/04	GZA065
12105-7 Fi	ield Blank				Liquid	03/17/04	03/11/04 10:45	GZA065
	quipment Blank				Liquid	03/17/04	03/11/04 09:55	GZA065
12105-9 Ed	quipment Blank	c-SD			Liquid	03/17/04	03/11/04 10:05	GZA065
			Lab :	Sample IDs				
Parameter		Units	12105-6	12105-7	1210	5-8 12	105-9	
Purgeable Ha	alocarbons (80)21)						
Bromodichlorometh	nane	ug/1	1.00	1.0U	1.00	1.0	OU .	
Bromoform		ug/1	5.0U	5.00	5.00	5.0		
Bromomethane (Met	hyl bromide)	ug/1	1.0U	1.00	1.00	1.0		
Carbon tetrachlor	ride	ug/l	1.00	1.00	1.00	1.0		
Chlorobenzene		ug/l	1.00	1.00	1.00	1.0		
Chloroethane		ug/1	1.00	1.0Ù	1.00	1.0		
Chloroform		ug/1	1.00	1.00	1.00	1.0		
Chloromethane		ug/1	1.00	1.0U	1.00	1.0		
Dibromochlorometh	ane	ug/1	1.00	1.00	1.00	1.0		
1,2-Dichlorobenze	ene	ug/1	1.00	1.00	1.00	1.0		
1,3-Dichlorobenze	ene	ug/l	1.00	1.00	1.00	1.0		
1,4-Dichlorobenze	ene	ug/l	1.00	1.00	1.00	1.0		
Dichlorodifluorom	ethane	ug/1	1.00	1.00	1.00	1.0		
1,1-Dichloroethan	ie	ug/l	1.00	1.00	1.00	1.0		
1,2-Dichloroethan	e ·	ug/1	1.00	1.00	1.00	1.0		
1,1-Dichloroethen	e	ug/l	1.00	1.00	1.00	1.0		
cis-1,2-Dichloroe	thylene	ug/l	1.00	1.00	1.00	1.0		
trans-1,2-Dichlor	oethene	ug/l	1.00	1.00	1.00	1.0		
1,2-Dichloropropa	ne	ug/l	1.00	1.00	1.00	1.0		
cis-1,3-Dichlorop	ropene	ug/1	1.00	1.00	1.00	1.0		
trans-1,3-Dichlor	opropene	ug/l	1.00	1.0U	1.00	1.0	U	
Methylene chlorid	e							
(Dichloromethan	e)	ug/l	5.00	5.0U	5.00	5.0	OU.	
1,1,2,2-Tetrachlo	roethane	ug/l	1.00	1.00	1.00	1.0		
Tetrachloroethene		ug/l	1.00	1.00	1.00	1.0		
1,1,1-Trichloroet	hane	ug/1	1.00	1.00	1.00	1.0		
1,1,2-Trichloroet		ug/l	1.00	1.00	1.00	1.0		

Lab Sample ID	Description				Matrix	Date Receiv	ed Date Sampled	SDG#
12105-6	Trip Blank				Liquid	03/17/04	03/11/04	CZA065
12105-7	Field Blank				Liquid	03/17/04	03/11/04 10:45	GZA065
12105-8	Equipment Bl	ank-SW			Liquid	03/17/04	03/11/04 09:55	GZA065
12105-9	Equipment B1	ank-SD			Liquid	03/17/04	03/11/04 10:05	GZA065
			Lab S	ample IDs	·		,,	
Parameter		Units	12105-6	12105-7	1210	5-8 1	2105-9	
Purgeable	Halocarbons	(8021)					7 V de	
Trichloroethen	e	ug/l	1.00	1.00	1.00	1	.00	
Trichlorofluor	omethane	ug/l	1.00	1.00	1.00		.00	
Vinyl chloride		ug/l	1.0U	1.00	1.00		.00	
2-Chloroethylv	inyl ether	ug/l	100	10U	100	10	DU	
Surrogate -								
Bromochlorom	ethane *	%	110 %	110 %	115 5	1	10 %	
Dilution Factor	r		1	1	1	1		
Prep Date			03/22/04	03/22/04	03/2	2/04 0	3/22/04	
Analysis Date			03/22/04	03/22/04	03/2		3/22/04	
Batch ID			VG031904A	VG031904A	•	•	031904A	

STL Tallahassee 2846 Industrial Plaza Drive - Tallahassee FL 32301 Telephone:(850) 878-3994 Fax:(850) 878-9504

Lab Sample ID	Description				Matrix	Date Received	Date Sampled	l SDG#
12105-10	GZA-SD-1				Solid	03/17/04	03/11/04 10:	30 GZA065
12105-11	GZA-SD-1 DUP				Solid	03/17/04	03/11/04 10:	
12105-12	GZA-SD-2				Solid	03/17/04	03/11/04 11:	
12105-13	GZA-SD-3				Solid	03/17/04	03/11/04 12:	
12105-14	GZA-SD-4				Solid	03/17/04	03/11/04 13:	
			Lab	Sample IDs				
Parameter		Units	12105-10	12105-11	1210	5-12 1210	05-13 1	2105-14
Purgeable	Halocarbons (82	260)						
Bromodichlorome	ethane	ug/kg d	w 6.6U	6.60	5.00	5.30	J 7	. 3U
Bromoform		ug/kg d	w 6.6U	6.60	5.00	5.30		.3U
Bromomethane (M	Methyl bromide)	ug/kg d	w 13U	1 3U	100	110	1	5U
Carbon tetrach	loride	ug/kg d	w 6.6U	6.60	5.00	5.30		. 3U
Chlorobenzene		ug/kg d	w 6.6U	6.6U	5.00	5.30	J 7	. 3U
Chloroethane		ug/kg d	w 13U	130	100	110		5U
2-Chloroethylvi	inyl ether	ug/kg d	w 66U	66U	50U	53U	7:	30
Chloroform Chloroform		ug/kg d	w 6.6U	6.6U	5.00	5.30		. 3U
Chloromethane		ug/kg d	v 13U	130	100	110	1	5U
Dibromochlorome	ethane	ug/kg d	v 6.6U	6.6U	5.00	5.30		. 3U
1,2-Dichlorober	nzene	ug/kg d	v 6.6U	6.6U	5.0U	5.30	7.	. 3 U
1,3-Dichlorober	nzene	ug/kg d	v 6.6U	6.60	5.00	5.30		.30
1,4-Dichlorober	nzene	ug/kg d	v 6.6U	6.60	5.00	5.30		. 3U
Dichlorodifluor	romethane	ug/kg d	v 6.6U	6.6U	5.00	5.30	7.	. 3U
1,1-Dichloroeth	nane	ug/kg d	v 6.6U	6.6U	5.00	5.30	7.	. 3 U
1,2-Dichloroeth	nane	ug/kg dv	v 6.6U	6.60	5.00	5.3U	7.	.3U
1,1-Dichloroeth	nene	ug/kg dv	v 6.6U	6.6U	5.00	5.30	7.	.3U
cis-1,2-Dichlor	oethylene	ug/kg dv	v 6.6U	6.6U	5.00	5.30	7.	.3U
trans-1,2-Dichl	loroethene	ug/kg dv	v 6.6U	6.6U	5.00	5.30	7.	30
1,2-Dichloropro	ppane	ug/kg dv	v 6.6U	6.6U	5.00	5.30		.3U
cis-1,3-Dichlor	ropropene	ug/kg dv	v 6.6U	6.6U	5.00	5.30		3U
trans-1,3-Dichl	oropropene	ug/kg dv	v 6.6U	6.60	5. 0 U	5.30	7.	3U
Methylene chlor	ride							
(Dichlorometh	nane)	ug/kg dv	v 8.0	5.33	2.1J	7.7	3.	13
1,1,2,2-Tetrach	loroethane	ug/kg dv	v 6.6U	6.60	5.00	5.30	7.	3 U
Tetrachloroethe	ene	ug/kg dv	v 6.6U	6.60	5.0U	5.30		3U

Lab Sample ID	Description				Matrix	Date Receive	d Date Sa	mpled	SDG#
12105-10	GZA-SD-1				Solid	03/17/04	03/11/0	4 10:30	GZA065
12105-11	GZA-SD-1 DUP				Solid	03/17/04		4 10:40	GZA065
12105-12	GZA-SD-2				Solid	03/17/04		4 11:45	GZA065
12105-13	CZA-SD-3				Solid	03/17/04		4 12:45	GZA065
12105-14	GZA-SD-4				Solid	03/17/04		4 13:15	GZA065
			Lab S	Sample IDs		,,	,, -		GE 1003
Parameter		Units	12105-10	12105-11	1210	05-12 12	105-13	5-13 12105-14	
Purgeable	: Halocarbons (8	260)				3,0	B		
1,1,1-Trichloroethane		ug/kg dw	6.6U	6.6U	5.00	5.:	BU	7.30	
1,1,2-Trichloroethane		ug/kg dw	6.6U	6.6U	5.00	5.3	BU	7.30	
Trichloroethene		ug/kg dw	6.60	6.6U	5.00		-	7.30	
Trichlorofluoromethane		ug/kg dw	6.6U	6.6U	5.00	5.3	BU	1.23	
Vinyl chloride		ug/kg dw	130	130	100	110		150	
Dibromomethane		ug/kg dw	6.60	6.60	5.00	5.3	BU	7.30	
Bromobenzene		ug/kg dw	6.6U	6.60	5.00	5.3	BU	7.30	
1,1,1,2-Tetrachloroethane		ug/kg dw	6.6U	6.60	5.0U	5.3	BU	7.30	
1,2,3-Trichloropropane		ug/kg dw	6.60	6.60	5.0U	5.3	BU	7.3U	
Surrogate -									
Dibromofluoromethane *		%	118 %	114 %	114 :	% 113	8 %	111 %	.
Surrogate - Toluene-d8 *		%	95 %	91 %	90 %	94	%	88 %	
Surrogate -						•			
4-Bromofluorobenzene *		%	86 %	82 %	80 %	85	%	75 %	
Dilution Factor			1	1	1	1	• •	1	
Prep Date			03/23/04	03/23/04	03/2	_	23/04	03/23	/04
Analysis Date			03/23/04	03/23/04	03/2		23/04	03/23	
Batch ID			VM031904Q	VM031904Q		•	319040	VM031	•

Lab Sample ID Description				Matrix	Date Received	Date Sampled	SDG#
12105-15 Laboratory Dup				Liquid	03/17/04		GZA065
12105-41 Precision (%RP	D) of Labora	tory Duplicates (A	Ndvisory)	Liquid	03/17/04		GZA065
		Lab 9	Sample IDs				
Parameter	Units	12105-15	12105-41				
Purgeable Halocarbons (80	021)						
Bromodichloromethane	ug/1	1.00	0 %				
Bromoform	ug/l	5.00	0 %				
Bromomethane (Methyl bromide)	ug/l	1.00	0 %				
Carbon tetrachloride	ug/l	1.00	0 %				
Chlorobenzene	ug/l	1.00	0 %				
Chloroethane	ug/l	1.00	0 %				
Chloroform	ug/1	1.00	0 %				
Chloromethane	ug/l	1.00	0 %				
Dibromochloromethane	ug/1	1.00	0 %				
1,2-Dichlorobenzene	ug/ī	1.00	0 %				
1,3-Dichlorobenzene	ug/1	1.00	0 %				
1,4-Dichlorobenzene	ug/1	1.00	0 %				
Dichlorodifluoromethane	ug/1	1.00	0 %				
1,1-Dichloroethane	ug/l	1.00	0 %				
1,2-Dichloroethane	ug/l	1.00	0 %				
1,1-Dichloroethene	ug/l	1.00	0 %				
cis-1,2-Dichloroethylene	ug/l	1.00	0 %				
trans-1,2-Dichloroethene	ug/l	1.00	0 %				
1,2-Dichloropropane	ug/1	1.00	0 %				
cis-1,3-Dichloropropene	ug/1	1.00	0 %				
trans-1,3-Dichloropropene	ug/l	1.00	0 %				
Methylene chloride							
(Dichloromethane)	ug/l	5.00	0 %				
1,1,2,2-Tetrachloroethane	ug/1	1.00	0 %				
Tetrachloroethene	ug/1	1.00	0 %				
1,1,1-Trichloroethane	ug/1	1.00	0 %				
1,1,2-Trichloroethane	ug/l	1.00	0 %				
Trichloroethene	ug/1	1.00	0 %				
Trichlorofluoromethane	ug/1	1.00	0 %				

Lab Sample ID	Description				Matrix	Date Received Date Sampled	SDG#
12105-15	Laboratory D	uplicate Resul	t (Batch)		Liquid	03/17/04	GZA065
12105-41	Precision (%	RPD) of Labora	tory Duplicates (A Lab S	dvisory) Sample IDs	Liquid	03/17/04	GZA065
Parameter		Units	12105-15	12105-41			
Purgeable	Halocarbons	(8021)					
Vinyl chloride	!	ug/l	1.00	0 %			
2-Chloroethylv	inyl ether	ug/l	10U	0 %			
Surrogate -							
Bromochlorom	ethane *	%	110 %				
Dilution Facto	r		1				
Prep Date			03/23/04				
Analysis Date			03/23/04				
Batch ID			VG031904A				

Lab Sample ID Description				Matrix	Date Receive	d Date Sampled	SDG#
12105-16 Method Blan	k	······································	* ,789.00	Liquid	03/17/04	, , , , , , , , , , , , , , , , , , ,	GZA065
12105-17 Lab Control	Standard % Rec	overy		Liquid	03/17/04		GZA065
		cate % Recovery		Liquid	03/17/04		GZA065
12105-19 Precision (,		Liquid	03/17/04		
		Lab 9	ample IDs	Liquia	03/11/04		GZA065
Parameter	Units	12105-16	12105-17	1210	5-18 12	105-19	
Purgeable Halocarbons	(8021)						
Bromodichloromethane	ug/l	1.00					
Bromoform	ug/1	5.0U					
Bromomethane (Methyl bromio		1.00					
Carbon tetrachloride	ug/1	1.00					
Chlorobenzene	ug/1	1.00	100 %	105 %	6 4.9) o/	
Chloroethane	ug/1	1.00	100 %	103 %	9 4.3	7 76	
Chloroform	ug/ī	1.00					
Chloromethane	ug/T	1.00					
Dibromochloromethane	ug/T	1.00					
1,2-Dichlorobenzene	ug/l	1.00					
1,3-Dichlorobenzene	ug/l	1.00					
1,4-Dichlorobenzene	ug/l	1.00					
Dichlorodifluoromethane	ug/l	1.00					
1,1-Dichloroethane	ug/T	1.00	•				
1,2-Dichloroethane	ug/l	1.00					
1,1-Dichloroethene	ug/l	1.00	95 %	100 %	5.1	ev.	
cis-1,2-Dichloroethylene	ug/1	1.00		200 /0		. 70	
trans-1,2-Dichloroethene	ug/1	1.00		•			
1,2-Dichloropropane	ug/1	1.00					
cis-1,3-Dichloropropene	ug/1	1.00					
trans-1,3-Dichloropropene	ug/1	1.00					
Methylene chloride	-						
(Dichloromethane)	ug/l	5.00					
1,1,2,2-Tetrachloroethane	ug/l	1.00					
Tetrachloroethene	ug/l	1.00					
1,1,1-Trichloroethane	ug/1	1.00					
1,1,2-Trichloroethane	ug/1	1.00					

				Matrix	Date Rece	rived	Date Sampled	SDG#
Method Blank				Liquid	03/17/04	<u> </u>	· · · · · · · · · · · · · · · · · · ·	GZA065
Lab Control:	Standard % Rec	overy		•				GZA065
Lab Control:	Standard Dupli	cate % Recovery		•				GZA065
		•						
		Lab S	iample IDs	Liquia	03/1//04			GZA065
	Units	12105-16	12105-17	1210	5-18	1210	5-19	
Halocarbons ((8021)							4.1
	ug/l	1.00	85 %	90 %		5 7 9	K	
methane	ug/l	1.00				<i></i>	•	
	ug/l	1.0U						
nyl ether	ug/l	1.0U						
	-							
thane *	%	105 %	100 %	105.9	K			
		1			•			
			-		2/04			
		• •	• •					
		• •		•	-	MOORE	10044	
! i !	Lab Control Lab Control Precision (% Halocarbons methane	Lab Control Standard % Rec Lab Control Standard Dupli Precision (%RPD) Units Halocarbons (8021) ug/l methane ug/l ug/l ug/l ug/l ug/l ug/l ug/l	Lab Control Standard % Recovery Lab Control Standard Duplicate % Recovery Precision (%RPD) Lab S Units 12105-16 Halocarbons (8021) ug/l 1.0U ug/l 1.0U ug/l 1.0U ug/l 1.0U ug/l 1.0U thane * % 105 %	Lab Control Standard % Recovery Lab Control Standard Duplicate % Recovery Precision (%RPD) Lab Sample IDs 12105-16 12105-17 Halocarbons (8021) ug/l 1.0U 85 % methane ug/l 1.0U ug/l 1.0U ug/l 1.0U thane * % 105 % 100 % 1 1 03/22/04 03/22/04 03/22/04	Lab Control Standard % Recovery Liquid Lab Control Standard Duplicate % Recovery Precision (%RPD) Lab Sample IDs Units 12105-16 12105-17 1210 Halocarbons (8021) ug/l 1.0U 85 % 90 % methane ug/l 1.0U ug/l 1.0U ug/l 1.0U thane * % 105 % 100 % 105 % 1 1 1 1 1 1 03/22/04	Lab Control Standard % Recovery Liquid 03/17/04 Lab Control Standard Duplicate % Recovery Liquid 03/17/04 Liqu	Lab Control Standard % Recovery Liquid 03/17/04 Lab Control Standard Duplicate % Recovery Liquid 03/17/04 Liqu	Lab Control Standard % Recovery Liquid 03/17/04 Lab Control Standard Duplicate % Recovery Liquid 03/17/04 Liqu

Lab Sample ID	Description	n			Matrix	Date Received Date Sampled	SDG#
12105-20		ke Result (Batch			Liquid	03/17/04	GZA065
12105-21	Matrix Spi	ke Duplicate Res	ult (Batch)		Liquid	03/17/04	GZA065
			Lab S	Cample IDs			
Parameter	-111	Units	12105-20	12105-21			
Purgeable	Halocarbons	s (8021)					17 H 8
Chlorobenzene		ug/l	20	21			
1,1-Dichloroeth	nene	ug/l	19	19			
Trichloroethene	2	ug/1	14	16			
Surrogate -							
Bromochlorome	ethane *	%	105 %	105 %			
Dilution Factor	•		1	1			
Prep Date			03/23/04	03/23/04			
Analysis Date			03/23/04	03/23/04			
Batch ID			VG031904A	VG031904A			

Lab Sample ID	Description	1			Matrix	Date Rec	ceived	Date Samp	jed SDG	#
12105-22	Matrix Spik	ke % Recovery			Liquid	03/17/04	 1		GZA(065
12105-23	Matrix Spik	e Duplicate % R	ecovery		Liquid	03/17/04			GZA(
12105-24	Precision ((%RPD) MS/MSD	•		Liquid	03/17/04			GZAC	
12105-25	MS Accuracy	Advisory Limit	(%R)		Liquid	03/17/04				
12105-26		on Advisory Limi	•		Liquid	03/17/04			CZAC CZAC	
			Lab S	Sample IDs	·	, , .			6 2 K	,0,5
Parameter		Units	12105-22	12105-23	1210	5-24	1210	5-25	12105-26	
Chlorobenzene	Halocarbons	%	100 %	105 %	4.9	%	69-13	35 %	<30 %	
1,1-Dichloroet	hene	%	95 %	95 %	0 %		56-14		<30 %	
Trichloroethen Surrogate -	e	%	70 %	80 %	13 %		69-14		<30 %	
Bromochlorom Dilution Factor Analysis Date		%	105 % 1 03/23/04	105 % 1 03/23/04			45-15	55 %		
Batch ID			VG031904A	VG031904A	VG03:	1904A				

Lab Sample ID Description				Matrix	Date Received	Date Sampled	SDG#
12105-27 Laboratory Dup				Solid	03/17/04		GZA065
12105-42 Precision (%RP	D) of Laborat	ory Duplicates (Advisory)	Solid	03/17/04		GZA065
		Lab :	Sample IDs				
Parameter	Units	12105-27	12105-42				
Purgeable Halocarbons (82	260)						
Bromodichloromethane	ug/kg dw	5.3U	0 %				
Bromoform	ug/kg dw	5.30	0 %				
Bromomethane (Methyl bromide)	ug/kg dw	110	0 %				
Carbon tetrachloride	ug/kg dw	5.30	0 %				
Chlorobenzene	ug/kg dw	5.30	0 %				
Chloroethane	ug/kg dw	110	0 %				
2-Chloroethylvinyl ether	ug/kg dw	530	0 %				
Chloroform	ug/kg dw	5.30	0 %				
Chloromethane	ug/kg dw	110	0 %				
Dibromochloromethane	ug/kg dw	5.30	0 %				
1,2-Dichlorobenzene	ug/kg dw	5.3U	0 %				
1,3-Dichlorobenzene	ug/kg dw	5.30	0 %				
1,4-Dichlorobenzene	ug/kg dw	5.3U	0 %				
Dichlorodifluoromethane	ug/kg dw	5.3U	0 %				
1,1-Dichloroethane	ug/kg dw	5.3U	0 %				
1,2-Dichloroethane	ug/kg dw	5.30	0 %				
1,1-Dichloroethene	ug/kg dw	5.30	0 %				
cis-1,2-Dichloroethylene	ug/kg dw	5.30	0 %				
trans-1,2-Dichloroethene	ug/kg dw	5.3U	0 %				
1,2-Dichloropropane	ug/kg dw	5.3U	0 %				
cis-1,3-Dichloropropene	ug/kg dw	5.30	0 %				
trans-1,3-Dichloropropene	ug/kg dw	5.3U	0 %				
Methylene chloride							
(Dichloromethane)	ug/kg dw	6.1	23.2 %				
1,1,2,2-Tetrachloroethane	ug/kg dw	5.30	0 %				
Tetrachloroethene	ug/kg dw	5.30	0 %				
1,1,1-Trichloroethane	ug/kg dw	5.3U	0 %				
1,1,2-Trichloroethane	ug/kg dw	5.30	0 %				
Trichloroethene	ug/kg dw	5.3U	0 %		•		

Lab Sample ID	Description				Matrix	Date Received	Date Sampled	SDG#
12105-27	Laboratory Do	uplicate Result	(Batch)	· · · · · · · · · · · · · · · · · · ·	Solid	03/17/04		GZA065
12105-42	Precision (%)	RPD) of Laborato	ory Duplicates (A	Advisory)	Solid	03/17/04		GZA065
				Sample IDs		,,		GENOUS
Parameter		Units	12105-27	12105-42				
Purgeable	Halocarbons ((8260)						11.1
Trichlorofluor	omethane	ug/kg dw	5.3U	0 %				
Vinyl chloride		ug/kg dw	11 U	0 %				
Dibromomethane		ug/kg dw	5.3U	0 %				
Bromobenzene		ug/kg dw	5.3U	0 %				
1,1,1,2-Tetrac	hloroethane	ug/kg dw	5.3U	0 %				
1,2,3-Trichlor	opropane	ug/kg dw	5.30	0 %				
Surrogate -								
Dibromofluor	omethane *	%	113%					
Surrogate - To	luene-d8 *	%	96%					
Surrogate -								
4-Bromofluoro	obenzene *	%	85%					
Dilution Factor	r		1					
Prep Date			03/25/04					
Analysis Date			03/25/04					
Batch ID			VM031904Q					

STL Tallahassee 2846 Industrial Plaza Drive - Tallahassee FL 32301 Telephone:(850) 878-3994 Fax:(850) 878-9504

Lab Sample IID De	scription					Matrix	Date Rece	ived Date Sampled	SDG#
12105-28 Me	thod Blank					Solid	03/17/04		GZA065
	b Control Sta					Solid	03/17/04		GZA065
12105-30 Lal	b Control Sta	andard	Duplicate	% Recovery		Solid	03/17/04		GZA065
	ecision (%RP(Solid	03/17/04		GZA065
				Lab 9	Sample IDs		,,		QD-003
Parameter		Units	<u> </u>	12105-28	12105-29	1210	5-30	12105-31	
Purgeable Hal	locarbons (82	260)							
Bromodichlorometha	ane	ug/kg	dw	5. 0 U					
Bromoform		ug/kg	dw	5.0U					
Bromomethane (Meth	nyl bromide)	ug/kg	dw	100					
Carbon tetrachlori	ide	ug/kg	dw	5.0U					
Ch lorobenzene		ug/kg	dw	5.00	108 %*F97	106 %	ζ.	1.9 %	
Chloroethane		ug/kg	dw	100				2.3 %	
2-Chloroethylvinyl	l ether	ug/kg	dw	50U					
Chloroform		ug/kg	dw	5.00					
Chloromethane		ug/kg	dw	10U					
Dibromochlorometha	ne	ug/kg	dw	5.00					
1,2-Dichlorobenzen	ne e	ug/kg	dw	5.00					
1,3-Dichlorobenzen	ie	ug/kg	dw	5.00					
1,4-Dichlorobenzen	e	ug/kg	dw	5.00					
Dichlorodifluorome	thane	ug/kg		5.0U					
1,1-Dichloroethane	!	ug/kg		5.00					
1,2-Dichloroethane	!	ug/kg	dw	5.0U					
1,1-Dichloroethene	!	ug/kg	dw	5.00	112 %	112 %		o %	
cis-1,2-Dichloroet	hylene	ug/kg	dw	5.00					
trans-1,2-Dichloro	ethene	ug/kg	dw	5.0U					
1,2-Dichloropropan	e	ug/kg	dw	5.0U					
cis-1,3-Dichloropn	opene	ug/kg	dw	5.00					
trans-1,3-Dichloro	propene	ug/kg		5.0U					
Methylene chloride									
(Dichloromethane)	ug/kg	dw	5.0U					
1,1,2,2-Tetrachlon	oethane	ug/kg		5.00					
Tetrachloroethene	-	ug/kg		5.0U			*		
1,1,1-Trichloroeth	ane	ug/kg		5.00					

Lab Sample ID	Description				Matrix	Date I	Received	Date Sampled	SDG#
12105-28	Method Blank				Solid	03/17/	/04		GZA065
12105-29	Lab Control S	Standard % Reco	very		Solid	03/17/			GZA065
12105-30	Lab Control S	Standard Duplic	ate % Recovery		Solid	03/17/			GZA065
12105-31	Precision (%F		•		Solid	03/17/			GZA065
			Lab 9	Sample IDs		05, 2.,	•		Q2,7003
Parameter		Units	12105-28	12105-29	1210)5-30	1210	5-31	
Purgeable	Halocarbons ((8260)							
1,1,2-Trichlor	oethane	ug/kg dw	5.0U						
Trichloroethen	e	ug/kg dw	5.0U	106 %	106	%	0 %		
Trichlorofluor	omethane	ug/kg dw	5.00			, •	0 70		
Vinyl chloride	!	ug/kg dw	100						
Dibromomethane	!	ug/kg dw	5.00						
Bromobenzene		ug/kg dw	5.0U						
1,1,1,2-Tetrac	hloroethane	ug/kg dw	5.0U						
1,2,3-Trichlor	opropane	ug/kg dw	5.0U						
Surrogate -									
Dibromofluor	omethane *	%	108 %	110 %	111 9	*			
Surrogate - To	luene-d8 *	%	98 %	99 %	102 9	%			
Surrogate -									
4-Bromofluor	obenzene *	%	92 %	96 %	96 %				
Dilution Facto	r		1	1	1				
Prep Date			03/23/05	03/23/04	03/2	3/04			
Analysis Date			03/23/04	03/23/04	03/2	•			
Batch ID			VM031904Q	VM031904Q	•	19040	VM031	9040	

Lab Sample ID	Description				Matrix	Date Received	Date Sampled	SDG#
12105-32 12105-33		Result (Batch) Duplicate Resu	It (Batch)		Solid Solid	03/17/04 03/17/04	9444	GZA065 GZA065
				ample IDs		03, 21, 01		QZA003
Parameter		Units	12105-32	12105-33				
Purgeable	Halocarbons	(8260)						
Chlorobenzene		ug/kg dw	81	72				
1,1-Dichloroet	hene	ug/kg dw	92	82				
Trichloroethen	e	ug/kg dw	77	70				
Surrogate -								
Dibromofluoro	omethane *	%	118 %	112 %				
Surrogate - To	luene-d8 *	%	98 %	97 %				
Surrogate -								
4-Bromofluor	obenzene *	%	94 %	91 %				
Dilution Factor	r		1	1				
Prep Date			03/23/04	03/23/04				
Analysis Date			03/23/04	03/23/04				
Batch ID			VM031904Q	VM031904Q				

	Description				Matrix	Date Re	ceived	Date Sa	mpTed SDG#
12105-34	Matrix Spike	% Recovery			Solid	03/17/04			GZA0
12105-35	Matrix Spike	Duplicate % R	ecovery		Solid	03/17/04			GZA0
12105-36	Precision (%	(RPD) MS/MSD	·		Solid	03/17/04			GZA0
12105-37	MS Accuracy	Advisory Limit	(%R)		Solid	03/17/04			GZA0
12105-38		Advisory Limit			Solid	03/17/04			GZA0
		-		ample IDs		, 2., 0			Q2A01
Parameter		Units	12105-34	12105-35	1210)5-36	1210	5-37	12105-38
Purgeable	Halocarbons	(8260)							
	Halocarbons		116 Y *E00	112 9/4500	12.0	,	02.10	N= 04	
Chlorobenzene		%	116 %*F98	112 %*F98	12 %		83-10		<50 %
	:hene	% %	131 %*F98	128 %*F98	11 %	3	57-13	L4 %	<50 %
Chlorobenzene 1,1-Dichloroet Trichloroethen	:hene	%			/	3		L4 %	
Chlorobenzene 1,1-Dichloroet	thene e	% %	131 %*F98	128 %*F98	11 %	3	57-11 66-11	14 % 14 %	<50 %
Chlorobenzene 1,1-Dichloroeti Trichloroethen Surrogate – Dibromofluore	chene ne romethane *	% % %	131 %*F98	128 %*F98	11 %	3	57-13 66-13 58-14	14 % 14 %	<50 %
Chlorobenzene 1,1-Dichloroet Trichloroethen Surrogate -	chene ne romethane *	% % %	131 %*F98	128 %*F98	11 %	3	57-11 66-11	14 % 14 %	<50 %
Chlorobenzene 1,1-Dichloroeti Trichloroethen Surrogate – Dibromofluoro Surrogate – To	chene ne romethane * Nuene-d8 *	% % %	131 %*F98	128 %*F98	11 %	3	57-13 66-13 58-14	14 % 14 % 12 % 16 %	<50 %

These test results meet all the requirements of NELAC. Any questions regarding this test report should be directed to the STL Project Manager who signed this test.

Methods: EPA SW-846 Update III

 $\ensuremath{\mathsf{J}}$ Estimated value; reported between the method detection limit and the reporting limit.

U Compound was not detected.

*F97 Accuracy recovery was higher than the laboratory calculated control limits, but within recommended method criteria.

*F98 MS/MSD recovery exceeded STL advisory limits.

Analytical Report

For: Mr. Michael Asselin

GZA GeoEnvironmental, Inc.

380 Harvey Road

Manchester, NH 03103-3347

CC:

Order Number: T4GZAQC

SDG Number: Client Project ID:

> Project: COMPAQ-S60 Report Date: 04/05/2004

Sampled By: Client

Sample Received Date: 02/09/2004

Requisition Number: Purchase Order:

Laura B. Snead, Project Manager

lsnead@stl-inc.com

License No.:

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Lab Sample ID Desc	ription				Matrix	Date Received	Date Sampled	SDG#
	rting Limi				Liquid	02/09/04		
GZAQC-2 Meth	od Detecti	on Limit (N	MDL)		Liquid	02/09/04		
Parameter		Units	CZAQC-1	Lab Sample IDs GZAQC-2				
Purgeable Halo	carbons (80	021)				14		
Bromodichloromethan		ug/l	1.0	0.17				
Bromoform		ug/l	5.0	0.54				
Bromomethane (Methy	1 bromide)	ug/l	1.0	0.52				
Carbon tetrachlorid	e	ug/1	1.0	0.098				
Chlorobenzene		ug/l	1.0	0.15				
Chloroethane		ug/l	1.0	0.29				
Chloroform		ug/1	1.0	0.18				
Chloromethane		ug/1	1.0	0.25				
Dibromochloromethan	2	ug/1	1.0	0.16				
1,2-Dichlorobenzene		ug/1	1.0	0.19				
1,3-Dichlorobenzene		ug/l	1.0	0.14				
1,4-Dichlorobenzene		ug/l	1.0	0.21				
Dichlorodifluorometh	nane	ug/l	1.0	0.18				
1,1-Dichloroethane		ug/1	1.0	0.13				
1,2-Dichloroethane		ug/l	1.0	0.16				
1,1-Dichloroethene		ug/1	1.0	0.19				
cis-1,2-Dichloroethy	lene/	ug/1	1.0	0.090				
trans-1,2-Dichloroet	:hene	ug/1	1.0	0.12	•			
1,2-Dichloropropane		ug/1	1.0	0.15				
cis-1,3-Dichloroprop	ene	ug/l	1.0	0.14				
trans-1,3-Dichloropr	opene	ug/1	1.0	0.11				
Methylene chloride								
(Dichloromethane)		ug/l	5.0	0.21				
1,1,2,2-Tetrachloroe	thane	ug/l	1.0	0.056				
Tetrachloroethene		ug/1	1.0	0.17				
1,1,1-Trichloroethan	e	ug/1	1.0	0.11				
1,1,2-Trichloroethan	e	ug/1	1.0	0.15				
Trichloroethene		ug/1	1.0	0.17				
Trichlorofluorometha	ne	ug/l	1.0	0.29				
Vinyl chloride		ug/1	1.0	0.25				

Lab Sample ID	Description				Matrix	Date Received Date Sampled
GZAQC-1 GZAQC-2	Reporting Li Method Detec	mit (RL) tion Limit (M	DL)	02/09/04 02/09/04		
Parameter		Units	GZAQC-1	Lab Sample IDs GZAQC-2	Liquid	,,,
	Halocarbons	•				
2-Chloroethylv	vinyl ether	ug/1	10	1.3		

Lab Sample IID	Description				Matrix	Date Received	Date Sampled	SDG#
GZAQC-3	Spike Amount A	dded, LCS/	LCSD		Liquid	02/09/04		***
GZAQC-4	LCS Accuracy C				Liquid	02/09/04		
GZAQC-5			mit (Advisory) %	RPD	Liquid	02/09/04		
				ab Sample IDs	Elquiu	02/03/04		
Parameter		Units	CZAQC-3	GZAQC-4	CZAQC-5			
Purgeable	e Halocarbons (80	021)	7			, ya. y		
Bromodichlorom		ug/1	20	70-130 %	<30 %			
Bromoform		ug/l	20	70-130 %	<30 %			
Bromomethane (Methyl bromide)	ug/1	20	70-130 % 70-130 %	<30 %			
Carbon tetrach		ug/1	20	70-130 % 70-130 %	<30 %			
Ch1orobenzene		ug/l	20	69-135 %	<30 %			
Chloroethane		ug/l	20	70-130 %	<30 %			
Chloroform		ug/l	20	70-130 %	<30 %			
Chloromethane		ug/l	20	70-130 %	<30 %			
Dibromochlorom	ethane	ug/l	20	70-130 %	<30 %			
1,2-Dichlorobe	nzene	ug/l	20	70-130 %	<30 %			
1,3-Dichlorobe	nzene	ug/l	20	70-130 %	<30 %			
1,4-Dichlorobe	nzene	ug/l	20	70-130 %	<30 %			
Dichlorodifluo	romethane	ug/l	20	70-130 %	<30 %			
1,1-Dichloroet	hane	ug/1	20	70-130 %	<30 %			
1,2-Dichloroet	hane	ug/l	20	70-130 %	<30 %			
1,1-Dichloroet	hene	ug/l	20	56-146 %	<30 %			
cis-1,2-Dichlo	roethylene	ug/1	20	70-130 %	<30 %			
trans-1,2-Dich	loroethene	ug/1	20	70-130 %	<30 %			
1,2-Dichloropro	opane	ug/1	20	70-130 %	<30 %			
cis-1,3-Dichlo	ropropene	ug/1	20	70-130 %	<30 %			
trans-1,3-Dich	loropropene	ug/l	20	70-130 %	<30 %			
Methylene chlo	ride	-						
(Dichlorometh	hane)	ug/l	20	70-130 %	<30 %			
L,1,2,2-Tetracl	hloroethane	ug/1	20	70-130 %	<30 %			
Tetrachloroeth	ene	ug/1	20	70-130 %	<30 %			
L,1,1-Trichloro	oethane	ug/l	20	70-130 %	<30 %			
L,1,2-Trichloro	oethane	ug/l	20	70-130 %	<30 %			
[rich]oroethene	2	ug/l	20	69-143 %	<30 %			
[rich]orof]uoro	omethane	ug/l	20	70-130 %	<30 %			
		-			, , ,			

Lab Sample ID	Description				Matrix	Date Received Date Sampled	SDG#
GZAQC-3 GZAQC-4	Spike Amount A LCS Accuracy C	Control Lim	it (%R)		Liquid Liquid	02/09/04 02/09/04	
GZAQC-5	LCS Precision	Control Lin	mit (Advisory) %	RPD	Liquid	02/09/04	
Parameter	***	Units	CZAQC-3	ab Sample IDs GZAQC-4	CZAQC-5		
Purgeable	Halocarbons (8	021)					
Vinyl chloride		ug/l	20	70-130 %	<30 %		
2-Chloroethylv	inyl ether	ug/1	20	70-130 %	<30 %		
Surrogate-1,4-	Dichlorobutane	%		56-110 %			

Lab Sample ID Description				Matrix	Date Received Date Sampled	SDG#
GZAQC-6 Reporting Limit				Solid	02/09/04	
GZAQC-7 Method Detection	on Limit (MD	L)		Solid	02/09/04	
			Lab Sample IDs			
Parameter	Units	CZAQC-6	GZAQC-7			
Purgeable Halocarbons (82	•					
Bromodichloromethane	ug/kg dw	5.0	0.77			
Bromoform	ug/kg dw	5.0	0.96			
Bromomethane (Methyl bromide)	ug/kg dw	10	0.48			
Carbon tetrachloride	ug/kg dw	5.0	0.70			
Chlorobenzene	ug/kg dw	5.0	0.77			
Chloroethane	ug/kg dw	10	0.73			
2-Chloroethylvinyl ether	ug/kg dw	50	13			
Chloroform	ug/kg dw	5.0	0.50			
Chloromethane	ug/kg dw	10	0.70			
Dibromochloromethane	ug/kg dw	5.0	0.72			
1,2-Dichlorobenzene	ug/kg dw	5.0	0.63			
1,3-Dichlorobenzene	ug/kg dw	5.0	0.82			
1,4-Dichlorobenzene	ug/kg dw	5.0	0.89			
Dichlorodifluoromethane	ug/kg dw	5.0	0.75			
1,1-Dichloroethane	ug/kg dw	5.0	0.52			
1,2-Dichloroethane	ug/kg dw	5.0	0.65			
1,1-Dichloroethene	ug/kg dw	5.0	0.50			
cis-1,2-Dichloroethylene	ug/kg dw	5.0	0.57			
trans-1,2-Dichloroethene	ug/kg dw	5.0	0.45			
1,2-Dichloropropane	ug/kg dw	5.0	0.60			
cis-1,3-Dichloropropene	ug/kg dw	5.0	0.90			
trans-1,3-Dichloropropene	ug/kg dw	5.0	0.80			
Methylene chloride						
(Dichloromethane)	ug/kg dw	5.0	0.67		•	
1,1,2,2-Tetrachloroethane	ug/kg dw	5.0	0.89			
Tetrachloroethene	ug/kg dw	5.0	0.58			
1,1,1-Trichloroethane	ug/kg dw	5.0	0.87			
1,1,2-Trichloroethane	ug/kg dw	5.0	1.0			
Trichloroethene	ug/kg dw	5.0	0.65			
[rich]orofluoromethane	ug/kg dw	5.0	0.72			

Lab Sample ID	Description				Matrix	Date Received	Date Sampled	SDG#
	Reporting Lin	nit (RL) tion Limit (MD	L)		Solid Solid	02/09/04 02/09/04		
Parameter		Units	CZAQC-6	Lab Sample IDs GZAQC-7		12, 33, 5		
Purgeable	Halocarbons ((8260)		-				7
Vinyl chloride		ug/kg dw	10	0.59				
Dibromomethane		ug/kg dw	5.0	0.71				
Bromobenzene		ug/kg dw	5.0	0.88				
1,1,1,2-Tetrach	loroethane	ug/kg dw	5.0	0.81				
1,2,3-Trichloro	propane	ug/kg dw	5.0	1.3				

Lab Sample IID D	escription					Matrix	Date Received	Date Sampled	SDG#
GZAQC-8 Sp	oike Amount A	dded, L	CS/LCSD			Solid	02/09/04		
GZAQC-9 LC	CS Accuracy Co	ontrol	Limit (XR)		Solid	02/09/04		
GZAQC-10 LC	CS Precision (Control	Limit	(Advisory)	%RPD	Solid	02/09/04		
				•	Lab Sample IDs		02,00,01		
Parameter		Units		CZAQC-8	GZAQC-9	CZAQC-1	D		
Purgeable Ha	alocarbons (82	260)						1100	
Bromodichlorometh		ug/kg	dw ·	50	74-111 %	<50 %			
Bromoform		ug/kg	dw	50	72-125 %	<50 %			
Bromomethane (Met	hyl bromide)	ug/kg		50	56-161 %	<100 %			
Carbon tetrachlor		ug/kg		50	44-139 %	<50 %			
Chlorobenzene		ug/kg		50	83-107 %	<50 %			
Chloroethane		ug/kg		50	73-147 %	<100 %			
2-Chloroethylviny	n ether	ug/kg	dw	50	70-130 %	<100 %			
Chloroform		ug/kg	dw	50	80-111 %	<50 %			
Chloromethane		ug/kg		50	49-153 %	<100 %			
Dibromochlorometh	ane	ug/kg	dw	50	80-117 %	<50 %			
1,2-Dichlorobenze	ne	ug/kg	dw	50	82-109 %	<50 %			
1,3-Dichlorobenze	ne	ug/kg	dw	50	83-107 %	<50 %			
1,4-Dichlorobenze		ug/kg	dw	50	84-107 %	<50 %			
Dichlorodifluorom	ethane	ug/kg	dw	50	43-170 %	<100 %			
1,1-Dichloroethan	e	ug/kg	dw	50	76-114 %	<50 %			
1,2-Dichloroethan	e	ug/kg	dw	50	64-115 %	<50 %			
1,1-Dichloroethen	_	ug/kg	dw	50	57-115 %	<50 %			
cis-1,2-Dichloroe	thylene	ug/kg	dw	50	76-115 %	<50 %			
trans-1,2-Dichlor	oethene	ug/kg	dw	50	68-122 %	<50 %			
1,2-Dichloropropa	ne	ug/kg	dw	50	79-108 %	<50 %			
cis-1,3-Dichlorop	ropene	ug/kg	dw	50	72-109 %	<50 %			
trans-1,3-Dichlor	• • •	ug/kg	dw	50	66-119 %	<50 %			
Methylene chlorid	e								
(Dichloromethan	e)	ug/kg	dw	50	68-121 %	<50 %			
1,1,2,2-Tetrachlo	roethane	ug/kg	dw	50	70-123 %	<50 %			
Tetrachloroethene		ug/kg	dw	50	59-119 %	<50 %			
1,1,1-TrichloroetH	hane	ug/kg	dw	50	70-110 %	<50 %			
1,1,2-Trichloroet	hane	ug/kg	dw	50	73-115 %	<50 %			
Trichloroethene		ug/kg	dw	50	66-114 %	<50 %	•		

Lab Sample ID	Description				Matrix	Date Received	Date Sampled	SDG#
GZAQC-8	Spike Amount	Added, LCS/LC	SD		Solid	02/09/04		 ,
CZAQC-9	LCS Accuracy	Control Limit	(%R)		Solid	02/09/04		
GZAQC-10			t (Advisory) %	RPD	Solid	02/09/04		
			• -	ab Sample IDs		32, 33, 3.		
Parameter		Units	CZAQC-8	CZAQC-9	CZAQC-1	0		
Purgeable	Halocarbons ((8260)					*****	
Trichlorofluor	omethane	ug/kg dw	50	75-136 %	<100 %			
Vinyl chloride		ug/kg dw	50	74-145 %	<100 %			
Dibromomethane		ug/kg dw	50	71-115 %	<50 %			
Bromobenzene		ug/kg dw	50	79-112 %	<50 %			
1,1,1,2-Tetracl	nloroethane	ug/kg dw	50	81-113 %	<50 %			
1,2,3-Trichlor	opropane	ug/kg dw	50	33-91 %	<50 %			
Surrogate -								
Dibromofluoro	omethane *	%		61-125 %				
Surrogate - Tol	luene-d8 *	%		80-122 %				
Surrogate -								
4-Bromofluoro	benzene *	%		67-124 %				

These test results meet all the requirements of NELAC. Any questions regarding this test report should be directed to the STL Project Manager who signed this test.

Methods: EPA SW-846 Update III Methods: EPA 40 CFR Part 136 Methods: EPA 40 CFR Part 141

Boron, Silica, and Total Recoverable Phenolics analyses were performed by:

STL Savannah 5102 LaRoche Avenue Savannah, GA 31404

*NA Not applicable.

D Detection.

APPENDIX E

SUMMARY OF SURFACE WATER FIELD SCREENING RESULTS

JFA Geological & Environmental Scientists, P.S.C.

P.O. Box 250423 Aguadilla, PR 00604-0423 State Road 107, Km. 3.1 Borinquen Ward, Aguadilla, PR Tel. 787 882-3762 Fax 787 882-5456

GZA-SGO Guanajibo River Sampling

Sample I.D.	Depth to Bottom	Sampling Depth	Time (24 hr)	Sampling Device	Sample Container
	(in)	(in)			
GZA-SW-1	< 12.0	n/a	1010	Beaker glass	40ml vial w/TFE
GZA-SW-1 Dup	< 12.0	n/a	1015	"	и
GZA-SD-1	< 12.0	5.5	1030	SS core liner	125ml amber glass
GZA-SD-1 Dup	< 12.0	5.0	1040	ч	**
GZA-SW-2	< 12.0	n/a	1130	Beaker glass	40ml vial w/TFE
GZA-SD-2	< 12.0	4.5	1145	SS core liner	125ml amber glass
GZA-SW-3	16.5	n/a	1235	Beaker glass	40ml vial w/TFE
GZA-SD-3	< 12.0	4.0	1245	SS core liner	125ml amber glass
GZA-SW-4	18.0	n/a	1305	Bcaker glass	40ml vial w/TFE
GZA-SD-4	< 12.0	4.0	1315	SS core liner	125ml amber glass

a-Depth to Bottom : depth from surface water to bottom of river. b- Sampling Depth: Depth below bottom (sediment). c. SS : stainless steel

Surface Water Physical Parameters

Sample LD.	pH (standard units)	Conductivity (ms/cm)	Temperature (°C)	Dissolved Oxigen (mg/L)
GZA-SW-1	6.51	0,462	27.5	10.21
GZA-SW-2	6.85	0.467	26.9	11.14
GZA-SW-3	5,98	0.478	27.3	8.50
GZA-SW-4	6.72	0,490	27,4	9.80